1 | // Copyright 2018 The Go Authors. All rights reserved. |
---|---|
2 | // Use of this source code is governed by a BSD-style |
3 | // license that can be found in the LICENSE file. |
4 | |
5 | // Package nilness inspects the control-flow graph of an SSA function |
6 | // and reports errors such as nil pointer dereferences and degenerate |
7 | // nil pointer comparisons. |
8 | package nilness |
9 | |
10 | import ( |
11 | "fmt" |
12 | "go/token" |
13 | "go/types" |
14 | |
15 | "golang.org/x/tools/go/analysis" |
16 | "golang.org/x/tools/go/analysis/passes/buildssa" |
17 | "golang.org/x/tools/go/ssa" |
18 | ) |
19 | |
20 | const Doc = `check for redundant or impossible nil comparisons |
21 | |
22 | The nilness checker inspects the control-flow graph of each function in |
23 | a package and reports nil pointer dereferences, degenerate nil |
24 | pointers, and panics with nil values. A degenerate comparison is of the form |
25 | x==nil or x!=nil where x is statically known to be nil or non-nil. These are |
26 | often a mistake, especially in control flow related to errors. Panics with nil |
27 | values are checked because they are not detectable by |
28 | |
29 | if r := recover(); r != nil { |
30 | |
31 | This check reports conditions such as: |
32 | |
33 | if f == nil { // impossible condition (f is a function) |
34 | } |
35 | |
36 | and: |
37 | |
38 | p := &v |
39 | ... |
40 | if p != nil { // tautological condition |
41 | } |
42 | |
43 | and: |
44 | |
45 | if p == nil { |
46 | print(*p) // nil dereference |
47 | } |
48 | |
49 | and: |
50 | |
51 | if p == nil { |
52 | panic(p) |
53 | } |
54 | ` |
55 | |
56 | var Analyzer = &analysis.Analyzer{ |
57 | Name: "nilness", |
58 | Doc: Doc, |
59 | Run: run, |
60 | Requires: []*analysis.Analyzer{buildssa.Analyzer}, |
61 | } |
62 | |
63 | func run(pass *analysis.Pass) (interface{}, error) { |
64 | ssainput := pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA) |
65 | for _, fn := range ssainput.SrcFuncs { |
66 | runFunc(pass, fn) |
67 | } |
68 | return nil, nil |
69 | } |
70 | |
71 | func runFunc(pass *analysis.Pass, fn *ssa.Function) { |
72 | reportf := func(category string, pos token.Pos, format string, args ...interface{}) { |
73 | pass.Report(analysis.Diagnostic{ |
74 | Pos: pos, |
75 | Category: category, |
76 | Message: fmt.Sprintf(format, args...), |
77 | }) |
78 | } |
79 | |
80 | // notNil reports an error if v is provably nil. |
81 | notNil := func(stack []fact, instr ssa.Instruction, v ssa.Value, descr string) { |
82 | if nilnessOf(stack, v) == isnil { |
83 | reportf("nilderef", instr.Pos(), "nil dereference in "+descr) |
84 | } |
85 | } |
86 | |
87 | // visit visits reachable blocks of the CFG in dominance order, |
88 | // maintaining a stack of dominating nilness facts. |
89 | // |
90 | // By traversing the dom tree, we can pop facts off the stack as |
91 | // soon as we've visited a subtree. Had we traversed the CFG, |
92 | // we would need to retain the set of facts for each block. |
93 | seen := make([]bool, len(fn.Blocks)) // seen[i] means visit should ignore block i |
94 | var visit func(b *ssa.BasicBlock, stack []fact) |
95 | visit = func(b *ssa.BasicBlock, stack []fact) { |
96 | if seen[b.Index] { |
97 | return |
98 | } |
99 | seen[b.Index] = true |
100 | |
101 | // Report nil dereferences. |
102 | for _, instr := range b.Instrs { |
103 | switch instr := instr.(type) { |
104 | case ssa.CallInstruction: |
105 | notNil(stack, instr, instr.Common().Value, |
106 | instr.Common().Description()) |
107 | case *ssa.FieldAddr: |
108 | notNil(stack, instr, instr.X, "field selection") |
109 | case *ssa.IndexAddr: |
110 | notNil(stack, instr, instr.X, "index operation") |
111 | case *ssa.MapUpdate: |
112 | notNil(stack, instr, instr.Map, "map update") |
113 | case *ssa.Slice: |
114 | // A nilcheck occurs in ptr[:] iff ptr is a pointer to an array. |
115 | if _, ok := instr.X.Type().Underlying().(*types.Pointer); ok { |
116 | notNil(stack, instr, instr.X, "slice operation") |
117 | } |
118 | case *ssa.Store: |
119 | notNil(stack, instr, instr.Addr, "store") |
120 | case *ssa.TypeAssert: |
121 | if !instr.CommaOk { |
122 | notNil(stack, instr, instr.X, "type assertion") |
123 | } |
124 | case *ssa.UnOp: |
125 | if instr.Op == token.MUL { // *X |
126 | notNil(stack, instr, instr.X, "load") |
127 | } |
128 | } |
129 | } |
130 | |
131 | // Look for panics with nil value |
132 | for _, instr := range b.Instrs { |
133 | switch instr := instr.(type) { |
134 | case *ssa.Panic: |
135 | if nilnessOf(stack, instr.X) == isnil { |
136 | reportf("nilpanic", instr.Pos(), "panic with nil value") |
137 | } |
138 | case *ssa.SliceToArrayPointer: |
139 | nn := nilnessOf(stack, instr.X) |
140 | if nn == isnil && slice2ArrayPtrLen(instr) > 0 { |
141 | reportf("conversionpanic", instr.Pos(), "nil slice being cast to an array of len > 0 will always panic") |
142 | } |
143 | } |
144 | } |
145 | |
146 | // For nil comparison blocks, report an error if the condition |
147 | // is degenerate, and push a nilness fact on the stack when |
148 | // visiting its true and false successor blocks. |
149 | if binop, tsucc, fsucc := eq(b); binop != nil { |
150 | xnil := nilnessOf(stack, binop.X) |
151 | ynil := nilnessOf(stack, binop.Y) |
152 | |
153 | if ynil != unknown && xnil != unknown && (xnil == isnil || ynil == isnil) { |
154 | // Degenerate condition: |
155 | // the nilness of both operands is known, |
156 | // and at least one of them is nil. |
157 | var adj string |
158 | if (xnil == ynil) == (binop.Op == token.EQL) { |
159 | adj = "tautological" |
160 | } else { |
161 | adj = "impossible" |
162 | } |
163 | reportf("cond", binop.Pos(), "%s condition: %s %s %s", adj, xnil, binop.Op, ynil) |
164 | |
165 | // If tsucc's or fsucc's sole incoming edge is impossible, |
166 | // it is unreachable. Prune traversal of it and |
167 | // all the blocks it dominates. |
168 | // (We could be more precise with full dataflow |
169 | // analysis of control-flow joins.) |
170 | var skip *ssa.BasicBlock |
171 | if xnil == ynil { |
172 | skip = fsucc |
173 | } else { |
174 | skip = tsucc |
175 | } |
176 | for _, d := range b.Dominees() { |
177 | if d == skip && len(d.Preds) == 1 { |
178 | continue |
179 | } |
180 | visit(d, stack) |
181 | } |
182 | return |
183 | } |
184 | |
185 | // "if x == nil" or "if nil == y" condition; x, y are unknown. |
186 | if xnil == isnil || ynil == isnil { |
187 | var newFacts facts |
188 | if xnil == isnil { |
189 | // x is nil, y is unknown: |
190 | // t successor learns y is nil. |
191 | newFacts = expandFacts(fact{binop.Y, isnil}) |
192 | } else { |
193 | // x is nil, y is unknown: |
194 | // t successor learns x is nil. |
195 | newFacts = expandFacts(fact{binop.X, isnil}) |
196 | } |
197 | |
198 | for _, d := range b.Dominees() { |
199 | // Successor blocks learn a fact |
200 | // only at non-critical edges. |
201 | // (We could do be more precise with full dataflow |
202 | // analysis of control-flow joins.) |
203 | s := stack |
204 | if len(d.Preds) == 1 { |
205 | if d == tsucc { |
206 | s = append(s, newFacts...) |
207 | } else if d == fsucc { |
208 | s = append(s, newFacts.negate()...) |
209 | } |
210 | } |
211 | visit(d, s) |
212 | } |
213 | return |
214 | } |
215 | } |
216 | |
217 | for _, d := range b.Dominees() { |
218 | visit(d, stack) |
219 | } |
220 | } |
221 | |
222 | // Visit the entry block. No need to visit fn.Recover. |
223 | if fn.Blocks != nil { |
224 | visit(fn.Blocks[0], make([]fact, 0, 20)) // 20 is plenty |
225 | } |
226 | } |
227 | |
228 | // A fact records that a block is dominated |
229 | // by the condition v == nil or v != nil. |
230 | type fact struct { |
231 | value ssa.Value |
232 | nilness nilness |
233 | } |
234 | |
235 | func (f fact) negate() fact { return fact{f.value, -f.nilness} } |
236 | |
237 | type nilness int |
238 | |
239 | const ( |
240 | isnonnil = -1 |
241 | unknown nilness = 0 |
242 | isnil = 1 |
243 | ) |
244 | |
245 | var nilnessStrings = []string{"non-nil", "unknown", "nil"} |
246 | |
247 | func (n nilness) String() string { return nilnessStrings[n+1] } |
248 | |
249 | // nilnessOf reports whether v is definitely nil, definitely not nil, |
250 | // or unknown given the dominating stack of facts. |
251 | func nilnessOf(stack []fact, v ssa.Value) nilness { |
252 | switch v := v.(type) { |
253 | // unwrap ChangeInterface and Slice values recursively, to detect if underlying |
254 | // values have any facts recorded or are otherwise known with regard to nilness. |
255 | // |
256 | // This work must be in addition to expanding facts about |
257 | // ChangeInterfaces during inference/fact gathering because this covers |
258 | // cases where the nilness of a value is intrinsic, rather than based |
259 | // on inferred facts, such as a zero value interface variable. That |
260 | // said, this work alone would only inform us when facts are about |
261 | // underlying values, rather than outer values, when the analysis is |
262 | // transitive in both directions. |
263 | case *ssa.ChangeInterface: |
264 | if underlying := nilnessOf(stack, v.X); underlying != unknown { |
265 | return underlying |
266 | } |
267 | case *ssa.Slice: |
268 | if underlying := nilnessOf(stack, v.X); underlying != unknown { |
269 | return underlying |
270 | } |
271 | case *ssa.SliceToArrayPointer: |
272 | nn := nilnessOf(stack, v.X) |
273 | if slice2ArrayPtrLen(v) > 0 { |
274 | if nn == isnil { |
275 | // We know that *(*[1]byte)(nil) is going to panic because of the |
276 | // conversion. So return unknown to the caller, prevent useless |
277 | // nil deference reporting due to * operator. |
278 | return unknown |
279 | } |
280 | // Otherwise, the conversion will yield a non-nil pointer to array. |
281 | // Note that the instruction can still panic if array length greater |
282 | // than slice length. If the value is used by another instruction, |
283 | // that instruction can assume the panic did not happen when that |
284 | // instruction is reached. |
285 | return isnonnil |
286 | } |
287 | // In case array length is zero, the conversion result depends on nilness of the slice. |
288 | if nn != unknown { |
289 | return nn |
290 | } |
291 | } |
292 | |
293 | // Is value intrinsically nil or non-nil? |
294 | switch v := v.(type) { |
295 | case *ssa.Alloc, |
296 | *ssa.FieldAddr, |
297 | *ssa.FreeVar, |
298 | *ssa.Function, |
299 | *ssa.Global, |
300 | *ssa.IndexAddr, |
301 | *ssa.MakeChan, |
302 | *ssa.MakeClosure, |
303 | *ssa.MakeInterface, |
304 | *ssa.MakeMap, |
305 | *ssa.MakeSlice: |
306 | return isnonnil |
307 | case *ssa.Const: |
308 | if v.IsNil() { |
309 | return isnil // nil or zero value of a pointer-like type |
310 | } else { |
311 | return unknown // non-pointer |
312 | } |
313 | } |
314 | |
315 | // Search dominating control-flow facts. |
316 | for _, f := range stack { |
317 | if f.value == v { |
318 | return f.nilness |
319 | } |
320 | } |
321 | return unknown |
322 | } |
323 | |
324 | func slice2ArrayPtrLen(v *ssa.SliceToArrayPointer) int64 { |
325 | return v.Type().(*types.Pointer).Elem().Underlying().(*types.Array).Len() |
326 | } |
327 | |
328 | // If b ends with an equality comparison, eq returns the operation and |
329 | // its true (equal) and false (not equal) successors. |
330 | func eq(b *ssa.BasicBlock) (op *ssa.BinOp, tsucc, fsucc *ssa.BasicBlock) { |
331 | if If, ok := b.Instrs[len(b.Instrs)-1].(*ssa.If); ok { |
332 | if binop, ok := If.Cond.(*ssa.BinOp); ok { |
333 | switch binop.Op { |
334 | case token.EQL: |
335 | return binop, b.Succs[0], b.Succs[1] |
336 | case token.NEQ: |
337 | return binop, b.Succs[1], b.Succs[0] |
338 | } |
339 | } |
340 | } |
341 | return nil, nil, nil |
342 | } |
343 | |
344 | // expandFacts takes a single fact and returns the set of facts that can be |
345 | // known about it or any of its related values. Some operations, like |
346 | // ChangeInterface, have transitive nilness, such that if you know the |
347 | // underlying value is nil, you also know the value itself is nil, and vice |
348 | // versa. This operation allows callers to match on any of the related values |
349 | // in analyses, rather than just the one form of the value that happened to |
350 | // appear in a comparison. |
351 | // |
352 | // This work must be in addition to unwrapping values within nilnessOf because |
353 | // while this work helps give facts about transitively known values based on |
354 | // inferred facts, the recursive check within nilnessOf covers cases where |
355 | // nilness facts are intrinsic to the underlying value, such as a zero value |
356 | // interface variables. |
357 | // |
358 | // ChangeInterface is the only expansion currently supported, but others, like |
359 | // Slice, could be added. At this time, this tool does not check slice |
360 | // operations in a way this expansion could help. See |
361 | // https://play.golang.org/p/mGqXEp7w4fR for an example. |
362 | func expandFacts(f fact) []fact { |
363 | ff := []fact{f} |
364 | |
365 | Loop: |
366 | for { |
367 | switch v := f.value.(type) { |
368 | case *ssa.ChangeInterface: |
369 | f = fact{v.X, f.nilness} |
370 | ff = append(ff, f) |
371 | default: |
372 | break Loop |
373 | } |
374 | } |
375 | |
376 | return ff |
377 | } |
378 | |
379 | type facts []fact |
380 | |
381 | func (ff facts) negate() facts { |
382 | nn := make([]fact, len(ff)) |
383 | for i, f := range ff { |
384 | nn[i] = f.negate() |
385 | } |
386 | return nn |
387 | } |
388 |
Members