1 | // Copyright 2021 The Go Authors. All rights reserved. |
---|---|
2 | // Use of this source code is governed by a BSD-style |
3 | // license that can be found in the LICENSE file. |
4 | |
5 | package vta |
6 | |
7 | import ( |
8 | "go/types" |
9 | |
10 | "golang.org/x/tools/go/callgraph/vta/internal/trie" |
11 | "golang.org/x/tools/go/ssa" |
12 | |
13 | "golang.org/x/tools/go/types/typeutil" |
14 | ) |
15 | |
16 | // scc computes strongly connected components (SCCs) of `g` using the |
17 | // classical Tarjan's algorithm for SCCs. The result is a pair <m, id> |
18 | // where m is a map from nodes to unique id of their SCC in the range |
19 | // [0, id). The SCCs are sorted in reverse topological order: for SCCs |
20 | // with ids X and Y s.t. X < Y, Y comes before X in the topological order. |
21 | func scc(g vtaGraph) (map[node]int, int) { |
22 | // standard data structures used by Tarjan's algorithm. |
23 | var index uint64 |
24 | var stack []node |
25 | indexMap := make(map[node]uint64) |
26 | lowLink := make(map[node]uint64) |
27 | onStack := make(map[node]bool) |
28 | |
29 | nodeToSccID := make(map[node]int) |
30 | sccID := 0 |
31 | |
32 | var doSCC func(node) |
33 | doSCC = func(n node) { |
34 | indexMap[n] = index |
35 | lowLink[n] = index |
36 | index = index + 1 |
37 | onStack[n] = true |
38 | stack = append(stack, n) |
39 | |
40 | for s := range g[n] { |
41 | if _, ok := indexMap[s]; !ok { |
42 | // Analyze successor s that has not been visited yet. |
43 | doSCC(s) |
44 | lowLink[n] = min(lowLink[n], lowLink[s]) |
45 | } else if onStack[s] { |
46 | // The successor is on the stack, meaning it has to be |
47 | // in the current SCC. |
48 | lowLink[n] = min(lowLink[n], indexMap[s]) |
49 | } |
50 | } |
51 | |
52 | // if n is a root node, pop the stack and generate a new SCC. |
53 | if lowLink[n] == indexMap[n] { |
54 | for { |
55 | w := stack[len(stack)-1] |
56 | stack = stack[:len(stack)-1] |
57 | onStack[w] = false |
58 | nodeToSccID[w] = sccID |
59 | if w == n { |
60 | break |
61 | } |
62 | } |
63 | sccID++ |
64 | } |
65 | } |
66 | |
67 | index = 0 |
68 | for n := range g { |
69 | if _, ok := indexMap[n]; !ok { |
70 | doSCC(n) |
71 | } |
72 | } |
73 | |
74 | return nodeToSccID, sccID |
75 | } |
76 | |
77 | func min(x, y uint64) uint64 { |
78 | if x < y { |
79 | return x |
80 | } |
81 | return y |
82 | } |
83 | |
84 | // propType represents type information being propagated |
85 | // over the vta graph. f != nil only for function nodes |
86 | // and nodes reachable from function nodes. There, we also |
87 | // remember the actual *ssa.Function in order to more |
88 | // precisely model higher-order flow. |
89 | type propType struct { |
90 | typ types.Type |
91 | f *ssa.Function |
92 | } |
93 | |
94 | // propTypeMap is an auxiliary structure that serves |
95 | // the role of a map from nodes to a set of propTypes. |
96 | type propTypeMap struct { |
97 | nodeToScc map[node]int |
98 | sccToTypes map[int]*trie.MutMap |
99 | } |
100 | |
101 | // propTypes returns a list of propTypes associated with |
102 | // node `n`. If `n` is not in the map `ptm`, nil is returned. |
103 | func (ptm propTypeMap) propTypes(n node) []propType { |
104 | id, ok := ptm.nodeToScc[n] |
105 | if !ok { |
106 | return nil |
107 | } |
108 | var pts []propType |
109 | for _, elem := range trie.Elems(ptm.sccToTypes[id].M) { |
110 | pts = append(pts, elem.(propType)) |
111 | } |
112 | return pts |
113 | } |
114 | |
115 | // propagate reduces the `graph` based on its SCCs and |
116 | // then propagates type information through the reduced |
117 | // graph. The result is a map from nodes to a set of types |
118 | // and functions, stemming from higher-order data flow, |
119 | // reaching the node. `canon` is used for type uniqueness. |
120 | func propagate(graph vtaGraph, canon *typeutil.Map) propTypeMap { |
121 | nodeToScc, sccID := scc(graph) |
122 | |
123 | // We also need the reverse map, from ids to SCCs. |
124 | sccs := make(map[int][]node, sccID) |
125 | for n, id := range nodeToScc { |
126 | sccs[id] = append(sccs[id], n) |
127 | } |
128 | |
129 | // propTypeIds are used to create unique ids for |
130 | // propType, to be used for trie-based type sets. |
131 | propTypeIds := make(map[propType]uint64) |
132 | // Id creation is based on == equality, which works |
133 | // as types are canonicalized (see getPropType). |
134 | propTypeId := func(p propType) uint64 { |
135 | if id, ok := propTypeIds[p]; ok { |
136 | return id |
137 | } |
138 | id := uint64(len(propTypeIds)) |
139 | propTypeIds[p] = id |
140 | return id |
141 | } |
142 | builder := trie.NewBuilder() |
143 | // Initialize sccToTypes to avoid repeated check |
144 | // for initialization later. |
145 | sccToTypes := make(map[int]*trie.MutMap, sccID) |
146 | for i := 0; i <= sccID; i++ { |
147 | sccToTypes[i] = nodeTypes(sccs[i], builder, propTypeId, canon) |
148 | } |
149 | |
150 | for i := len(sccs) - 1; i >= 0; i-- { |
151 | nextSccs := make(map[int]struct{}) |
152 | for _, node := range sccs[i] { |
153 | for succ := range graph[node] { |
154 | nextSccs[nodeToScc[succ]] = struct{}{} |
155 | } |
156 | } |
157 | // Propagate types to all successor SCCs. |
158 | for nextScc := range nextSccs { |
159 | sccToTypes[nextScc].Merge(sccToTypes[i].M) |
160 | } |
161 | } |
162 | return propTypeMap{nodeToScc: nodeToScc, sccToTypes: sccToTypes} |
163 | } |
164 | |
165 | // nodeTypes returns a set of propTypes for `nodes`. These are the |
166 | // propTypes stemming from the type of each node in `nodes` plus. |
167 | func nodeTypes(nodes []node, builder *trie.Builder, propTypeId func(p propType) uint64, canon *typeutil.Map) *trie.MutMap { |
168 | typeSet := builder.MutEmpty() |
169 | for _, n := range nodes { |
170 | if hasInitialTypes(n) { |
171 | pt := getPropType(n, canon) |
172 | typeSet.Update(propTypeId(pt), pt) |
173 | } |
174 | } |
175 | return &typeSet |
176 | } |
177 | |
178 | // hasInitialTypes check if a node can have initial types. |
179 | // Returns true iff `n` is not a panic, recover, nestedPtr* |
180 | // node, nor a node whose type is an interface. |
181 | func hasInitialTypes(n node) bool { |
182 | switch n.(type) { |
183 | case panicArg, recoverReturn, nestedPtrFunction, nestedPtrInterface: |
184 | return false |
185 | default: |
186 | return !types.IsInterface(n.Type()) |
187 | } |
188 | } |
189 | |
190 | // getPropType creates a propType for `node` based on its type. |
191 | // propType.typ is always node.Type(). If node is function, then |
192 | // propType.val is the underlying function; nil otherwise. |
193 | func getPropType(node node, canon *typeutil.Map) propType { |
194 | t := canonicalize(node.Type(), canon) |
195 | if fn, ok := node.(function); ok { |
196 | return propType{f: fn.f, typ: t} |
197 | } |
198 | return propType{f: nil, typ: t} |
199 | } |
200 |
Members