1 | // Copyright 2013 The Go Authors. All rights reserved. |
---|---|
2 | // Use of this source code is governed by a BSD-style |
3 | // license that can be found in the LICENSE file. |
4 | |
5 | package pointer |
6 | |
7 | // This file implements renumbering, a pre-solver optimization to |
8 | // improve the efficiency of the solver's points-to set representation. |
9 | // |
10 | // TODO(adonovan): rename file "renumber.go" |
11 | |
12 | import "fmt" |
13 | |
14 | // renumber permutes a.nodes so that all nodes within an addressable |
15 | // object appear before all non-addressable nodes, maintaining the |
16 | // order of nodes within the same object (as required by offsetAddr). |
17 | // |
18 | // renumber must update every nodeid in the analysis (constraints, |
19 | // Pointers, callgraph, etc) to reflect the new ordering. |
20 | // |
21 | // This is an optimisation to increase the locality and efficiency of |
22 | // sparse representations of points-to sets. (Typically only about |
23 | // 20% of nodes are within an object.) |
24 | // |
25 | // NB: nodes added during solving (e.g. for reflection, SetFinalizer) |
26 | // will be appended to the end. |
27 | // |
28 | // Renumbering makes the PTA log inscrutable. To aid debugging, later |
29 | // phases (e.g. HVN) must not rely on it having occurred. |
30 | func (a *analysis) renumber() { |
31 | if a.log != nil { |
32 | fmt.Fprintf(a.log, "\n\n==== Renumbering\n\n") |
33 | } |
34 | |
35 | N := nodeid(len(a.nodes)) |
36 | newNodes := make([]*node, N) |
37 | renumbering := make([]nodeid, N) // maps old to new |
38 | |
39 | var i, j nodeid |
40 | |
41 | // The zero node is special. |
42 | newNodes[j] = a.nodes[i] |
43 | renumbering[i] = j |
44 | i++ |
45 | j++ |
46 | |
47 | // Pass 1: object nodes. |
48 | for i < N { |
49 | obj := a.nodes[i].obj |
50 | if obj == nil { |
51 | i++ |
52 | continue |
53 | } |
54 | |
55 | end := i + nodeid(obj.size) |
56 | for i < end { |
57 | newNodes[j] = a.nodes[i] |
58 | renumbering[i] = j |
59 | i++ |
60 | j++ |
61 | } |
62 | } |
63 | nobj := j |
64 | |
65 | // Pass 2: non-object nodes. |
66 | for i = 1; i < N; { |
67 | obj := a.nodes[i].obj |
68 | if obj != nil { |
69 | i += nodeid(obj.size) |
70 | continue |
71 | } |
72 | |
73 | newNodes[j] = a.nodes[i] |
74 | renumbering[i] = j |
75 | i++ |
76 | j++ |
77 | } |
78 | |
79 | if j != N { |
80 | panic(fmt.Sprintf("internal error: j=%d, N=%d", j, N)) |
81 | } |
82 | |
83 | // Log the remapping table. |
84 | if a.log != nil { |
85 | fmt.Fprintf(a.log, "Renumbering nodes to improve density:\n") |
86 | fmt.Fprintf(a.log, "(%d object nodes of %d total)\n", nobj, N) |
87 | for old, new := range renumbering { |
88 | fmt.Fprintf(a.log, "\tn%d -> n%d\n", old, new) |
89 | } |
90 | } |
91 | |
92 | // Now renumber all existing nodeids to use the new node permutation. |
93 | // It is critical that all reachable nodeids are accounted for! |
94 | |
95 | // Renumber nodeids in queried Pointers. |
96 | for v, ptr := range a.result.Queries { |
97 | ptr.n = renumbering[ptr.n] |
98 | a.result.Queries[v] = ptr |
99 | } |
100 | for v, ptr := range a.result.IndirectQueries { |
101 | ptr.n = renumbering[ptr.n] |
102 | a.result.IndirectQueries[v] = ptr |
103 | } |
104 | for _, queries := range a.config.extendedQueries { |
105 | for _, query := range queries { |
106 | if query.ptr != nil { |
107 | query.ptr.n = renumbering[query.ptr.n] |
108 | } |
109 | } |
110 | } |
111 | |
112 | // Renumber nodeids in global objects. |
113 | for v, id := range a.globalobj { |
114 | a.globalobj[v] = renumbering[id] |
115 | } |
116 | |
117 | // Renumber nodeids in constraints. |
118 | for _, c := range a.constraints { |
119 | c.renumber(renumbering) |
120 | } |
121 | |
122 | // Renumber nodeids in the call graph. |
123 | for _, cgn := range a.cgnodes { |
124 | cgn.obj = renumbering[cgn.obj] |
125 | for _, site := range cgn.sites { |
126 | site.targets = renumbering[site.targets] |
127 | } |
128 | } |
129 | |
130 | a.nodes = newNodes |
131 | } |
132 |
Members