1 | // Copyright 2013 The Go Authors. All rights reserved. |
---|---|
2 | // Use of this source code is governed by a BSD-style |
3 | // license that can be found in the LICENSE file. |
4 | |
5 | package pointer |
6 | |
7 | // This file defines a naive Andersen-style solver for the inclusion |
8 | // constraint system. |
9 | |
10 | import ( |
11 | "fmt" |
12 | "go/types" |
13 | ) |
14 | |
15 | type solverState struct { |
16 | complex []constraint // complex constraints attached to this node |
17 | copyTo nodeset // simple copy constraint edges |
18 | pts nodeset // points-to set of this node |
19 | prevPTS nodeset // pts(n) in previous iteration (for difference propagation) |
20 | } |
21 | |
22 | func (a *analysis) solve() { |
23 | start("Solving") |
24 | if a.log != nil { |
25 | fmt.Fprintf(a.log, "\n\n==== Solving constraints\n\n") |
26 | } |
27 | |
28 | // Solver main loop. |
29 | var delta nodeset |
30 | for { |
31 | // Add new constraints to the graph: |
32 | // static constraints from SSA on round 1, |
33 | // dynamic constraints from reflection thereafter. |
34 | a.processNewConstraints() |
35 | |
36 | var x int |
37 | if !a.work.TakeMin(&x) { |
38 | break // empty |
39 | } |
40 | id := nodeid(x) |
41 | if a.log != nil { |
42 | fmt.Fprintf(a.log, "\tnode n%d\n", id) |
43 | } |
44 | |
45 | n := a.nodes[id] |
46 | |
47 | // Difference propagation. |
48 | delta.Difference(&n.solve.pts.Sparse, &n.solve.prevPTS.Sparse) |
49 | if delta.IsEmpty() { |
50 | continue |
51 | } |
52 | if a.log != nil { |
53 | fmt.Fprintf(a.log, "\t\tpts(n%d : %s) = %s + %s\n", |
54 | id, n.typ, &delta, &n.solve.prevPTS) |
55 | } |
56 | n.solve.prevPTS.Copy(&n.solve.pts.Sparse) |
57 | |
58 | // Apply all resolution rules attached to n. |
59 | a.solveConstraints(n, &delta) |
60 | |
61 | if a.log != nil { |
62 | fmt.Fprintf(a.log, "\t\tpts(n%d) = %s\n", id, &n.solve.pts) |
63 | } |
64 | } |
65 | |
66 | if !a.nodes[0].solve.pts.IsEmpty() { |
67 | panic(fmt.Sprintf("pts(0) is nonempty: %s", &a.nodes[0].solve.pts)) |
68 | } |
69 | |
70 | // Release working state (but keep final PTS). |
71 | for _, n := range a.nodes { |
72 | n.solve.complex = nil |
73 | n.solve.copyTo.Clear() |
74 | n.solve.prevPTS.Clear() |
75 | } |
76 | |
77 | if a.log != nil { |
78 | fmt.Fprintf(a.log, "Solver done\n") |
79 | |
80 | // Dump solution. |
81 | for i, n := range a.nodes { |
82 | if !n.solve.pts.IsEmpty() { |
83 | fmt.Fprintf(a.log, "pts(n%d) = %s : %s\n", i, &n.solve.pts, n.typ) |
84 | } |
85 | } |
86 | } |
87 | stop("Solving") |
88 | } |
89 | |
90 | // processNewConstraints takes the new constraints from a.constraints |
91 | // and adds them to the graph, ensuring |
92 | // that new constraints are applied to pre-existing labels and |
93 | // that pre-existing constraints are applied to new labels. |
94 | func (a *analysis) processNewConstraints() { |
95 | // Take the slice of new constraints. |
96 | // (May grow during call to solveConstraints.) |
97 | constraints := a.constraints |
98 | a.constraints = nil |
99 | |
100 | // Initialize points-to sets from addr-of (base) constraints. |
101 | for _, c := range constraints { |
102 | if c, ok := c.(*addrConstraint); ok { |
103 | dst := a.nodes[c.dst] |
104 | dst.solve.pts.add(c.src) |
105 | |
106 | // Populate the worklist with nodes that point to |
107 | // something initially (due to addrConstraints) and |
108 | // have other constraints attached. |
109 | // (A no-op in round 1.) |
110 | if !dst.solve.copyTo.IsEmpty() || len(dst.solve.complex) > 0 { |
111 | a.addWork(c.dst) |
112 | } |
113 | } |
114 | } |
115 | |
116 | // Attach simple (copy) and complex constraints to nodes. |
117 | var stale nodeset |
118 | for _, c := range constraints { |
119 | var id nodeid |
120 | switch c := c.(type) { |
121 | case *addrConstraint: |
122 | // base constraints handled in previous loop |
123 | continue |
124 | case *copyConstraint: |
125 | // simple (copy) constraint |
126 | id = c.src |
127 | a.nodes[id].solve.copyTo.add(c.dst) |
128 | default: |
129 | // complex constraint |
130 | id = c.ptr() |
131 | solve := a.nodes[id].solve |
132 | solve.complex = append(solve.complex, c) |
133 | } |
134 | |
135 | if n := a.nodes[id]; !n.solve.pts.IsEmpty() { |
136 | if !n.solve.prevPTS.IsEmpty() { |
137 | stale.add(id) |
138 | } |
139 | a.addWork(id) |
140 | } |
141 | } |
142 | // Apply new constraints to pre-existing PTS labels. |
143 | var space [50]int |
144 | for _, id := range stale.AppendTo(space[:0]) { |
145 | n := a.nodes[nodeid(id)] |
146 | a.solveConstraints(n, &n.solve.prevPTS) |
147 | } |
148 | } |
149 | |
150 | // solveConstraints applies each resolution rule attached to node n to |
151 | // the set of labels delta. It may generate new constraints in |
152 | // a.constraints. |
153 | func (a *analysis) solveConstraints(n *node, delta *nodeset) { |
154 | if delta.IsEmpty() { |
155 | return |
156 | } |
157 | |
158 | // Process complex constraints dependent on n. |
159 | for _, c := range n.solve.complex { |
160 | if a.log != nil { |
161 | fmt.Fprintf(a.log, "\t\tconstraint %s\n", c) |
162 | } |
163 | c.solve(a, delta) |
164 | } |
165 | |
166 | // Process copy constraints. |
167 | var copySeen nodeset |
168 | for _, x := range n.solve.copyTo.AppendTo(a.deltaSpace) { |
169 | mid := nodeid(x) |
170 | if copySeen.add(mid) { |
171 | if a.nodes[mid].solve.pts.addAll(delta) { |
172 | a.addWork(mid) |
173 | } |
174 | } |
175 | } |
176 | } |
177 | |
178 | // addLabel adds label to the points-to set of ptr and reports whether the set grew. |
179 | func (a *analysis) addLabel(ptr, label nodeid) bool { |
180 | b := a.nodes[ptr].solve.pts.add(label) |
181 | if b && a.log != nil { |
182 | fmt.Fprintf(a.log, "\t\tpts(n%d) += n%d\n", ptr, label) |
183 | } |
184 | return b |
185 | } |
186 | |
187 | func (a *analysis) addWork(id nodeid) { |
188 | a.work.Insert(int(id)) |
189 | if a.log != nil { |
190 | fmt.Fprintf(a.log, "\t\twork: n%d\n", id) |
191 | } |
192 | } |
193 | |
194 | // onlineCopy adds a copy edge. It is called online, i.e. during |
195 | // solving, so it adds edges and pts members directly rather than by |
196 | // instantiating a 'constraint'. |
197 | // |
198 | // The size of the copy is implicitly 1. |
199 | // It returns true if pts(dst) changed. |
200 | func (a *analysis) onlineCopy(dst, src nodeid) bool { |
201 | if dst != src { |
202 | if nsrc := a.nodes[src]; nsrc.solve.copyTo.add(dst) { |
203 | if a.log != nil { |
204 | fmt.Fprintf(a.log, "\t\t\tdynamic copy n%d <- n%d\n", dst, src) |
205 | } |
206 | // TODO(adonovan): most calls to onlineCopy |
207 | // are followed by addWork, possibly batched |
208 | // via a 'changed' flag; see if there's a |
209 | // noticeable penalty to calling addWork here. |
210 | return a.nodes[dst].solve.pts.addAll(&nsrc.solve.pts) |
211 | } |
212 | } |
213 | return false |
214 | } |
215 | |
216 | // Returns sizeof. |
217 | // Implicitly adds nodes to worklist. |
218 | // |
219 | // TODO(adonovan): now that we support a.copy() during solving, we |
220 | // could eliminate onlineCopyN, but it's much slower. Investigate. |
221 | func (a *analysis) onlineCopyN(dst, src nodeid, sizeof uint32) uint32 { |
222 | for i := uint32(0); i < sizeof; i++ { |
223 | if a.onlineCopy(dst, src) { |
224 | a.addWork(dst) |
225 | } |
226 | src++ |
227 | dst++ |
228 | } |
229 | return sizeof |
230 | } |
231 | |
232 | func (c *loadConstraint) solve(a *analysis, delta *nodeset) { |
233 | var changed bool |
234 | for _, x := range delta.AppendTo(a.deltaSpace) { |
235 | k := nodeid(x) |
236 | koff := k + nodeid(c.offset) |
237 | if a.onlineCopy(c.dst, koff) { |
238 | changed = true |
239 | } |
240 | } |
241 | if changed { |
242 | a.addWork(c.dst) |
243 | } |
244 | } |
245 | |
246 | func (c *storeConstraint) solve(a *analysis, delta *nodeset) { |
247 | for _, x := range delta.AppendTo(a.deltaSpace) { |
248 | k := nodeid(x) |
249 | koff := k + nodeid(c.offset) |
250 | if a.onlineCopy(koff, c.src) { |
251 | a.addWork(koff) |
252 | } |
253 | } |
254 | } |
255 | |
256 | func (c *offsetAddrConstraint) solve(a *analysis, delta *nodeset) { |
257 | dst := a.nodes[c.dst] |
258 | for _, x := range delta.AppendTo(a.deltaSpace) { |
259 | k := nodeid(x) |
260 | if dst.solve.pts.add(k + nodeid(c.offset)) { |
261 | a.addWork(c.dst) |
262 | } |
263 | } |
264 | } |
265 | |
266 | func (c *typeFilterConstraint) solve(a *analysis, delta *nodeset) { |
267 | for _, x := range delta.AppendTo(a.deltaSpace) { |
268 | ifaceObj := nodeid(x) |
269 | tDyn, _, indirect := a.taggedValue(ifaceObj) |
270 | if indirect { |
271 | // TODO(adonovan): we'll need to implement this |
272 | // when we start creating indirect tagged objects. |
273 | panic("indirect tagged object") |
274 | } |
275 | |
276 | if types.AssignableTo(tDyn, c.typ) { |
277 | if a.addLabel(c.dst, ifaceObj) { |
278 | a.addWork(c.dst) |
279 | } |
280 | } |
281 | } |
282 | } |
283 | |
284 | func (c *untagConstraint) solve(a *analysis, delta *nodeset) { |
285 | predicate := types.AssignableTo |
286 | if c.exact { |
287 | predicate = types.Identical |
288 | } |
289 | for _, x := range delta.AppendTo(a.deltaSpace) { |
290 | ifaceObj := nodeid(x) |
291 | tDyn, v, indirect := a.taggedValue(ifaceObj) |
292 | if indirect { |
293 | // TODO(adonovan): we'll need to implement this |
294 | // when we start creating indirect tagged objects. |
295 | panic("indirect tagged object") |
296 | } |
297 | |
298 | if predicate(tDyn, c.typ) { |
299 | // Copy payload sans tag to dst. |
300 | // |
301 | // TODO(adonovan): opt: if tDyn is |
302 | // nonpointerlike we can skip this entire |
303 | // constraint, perhaps. We only care about |
304 | // pointers among the fields. |
305 | a.onlineCopyN(c.dst, v, a.sizeof(tDyn)) |
306 | } |
307 | } |
308 | } |
309 | |
310 | func (c *invokeConstraint) solve(a *analysis, delta *nodeset) { |
311 | for _, x := range delta.AppendTo(a.deltaSpace) { |
312 | ifaceObj := nodeid(x) |
313 | tDyn, v, indirect := a.taggedValue(ifaceObj) |
314 | if indirect { |
315 | // TODO(adonovan): we may need to implement this if |
316 | // we ever apply invokeConstraints to reflect.Value PTSs, |
317 | // e.g. for (reflect.Value).Call. |
318 | panic("indirect tagged object") |
319 | } |
320 | |
321 | // Look up the concrete method. |
322 | fn := a.prog.LookupMethod(tDyn, c.method.Pkg(), c.method.Name()) |
323 | if fn == nil { |
324 | panic(fmt.Sprintf("n%d: no ssa.Function for %s", c.iface, c.method)) |
325 | } |
326 | sig := fn.Signature |
327 | |
328 | fnObj := a.globalobj[fn] // dynamic calls use shared contour |
329 | if fnObj == 0 { |
330 | // a.objectNode(fn) was not called during gen phase. |
331 | panic(fmt.Sprintf("a.globalobj[%s]==nil", fn)) |
332 | } |
333 | |
334 | // Make callsite's fn variable point to identity of |
335 | // concrete method. (There's no need to add it to |
336 | // worklist since it never has attached constraints.) |
337 | a.addLabel(c.params, fnObj) |
338 | |
339 | // Extract value and connect to method's receiver. |
340 | // Copy payload to method's receiver param (arg0). |
341 | arg0 := a.funcParams(fnObj) |
342 | recvSize := a.sizeof(sig.Recv().Type()) |
343 | a.onlineCopyN(arg0, v, recvSize) |
344 | |
345 | src := c.params + 1 // skip past identity |
346 | dst := arg0 + nodeid(recvSize) |
347 | |
348 | // Copy caller's argument block to method formal parameters. |
349 | paramsSize := a.sizeof(sig.Params()) |
350 | a.onlineCopyN(dst, src, paramsSize) |
351 | src += nodeid(paramsSize) |
352 | dst += nodeid(paramsSize) |
353 | |
354 | // Copy method results to caller's result block. |
355 | resultsSize := a.sizeof(sig.Results()) |
356 | a.onlineCopyN(src, dst, resultsSize) |
357 | } |
358 | } |
359 | |
360 | func (c *addrConstraint) solve(a *analysis, delta *nodeset) { |
361 | panic("addr is not a complex constraint") |
362 | } |
363 | |
364 | func (c *copyConstraint) solve(a *analysis, delta *nodeset) { |
365 | panic("copy is not a complex constraint") |
366 | } |
367 |
Members