1 | // Copyright 2013 The Go Authors. All rights reserved. |
---|---|
2 | // Use of this source code is governed by a BSD-style |
3 | // license that can be found in the LICENSE file. |
4 | |
5 | package ssa |
6 | |
7 | // This file defines algorithms related to dominance. |
8 | |
9 | // Dominator tree construction ---------------------------------------- |
10 | // |
11 | // We use the algorithm described in Lengauer & Tarjan. 1979. A fast |
12 | // algorithm for finding dominators in a flowgraph. |
13 | // http://doi.acm.org/10.1145/357062.357071 |
14 | // |
15 | // We also apply the optimizations to SLT described in Georgiadis et |
16 | // al, Finding Dominators in Practice, JGAA 2006, |
17 | // http://jgaa.info/accepted/2006/GeorgiadisTarjanWerneck2006.10.1.pdf |
18 | // to avoid the need for buckets of size > 1. |
19 | |
20 | import ( |
21 | "bytes" |
22 | "fmt" |
23 | "math/big" |
24 | "os" |
25 | "sort" |
26 | ) |
27 | |
28 | // Idom returns the block that immediately dominates b: |
29 | // its parent in the dominator tree, if any. |
30 | // Neither the entry node (b.Index==0) nor recover node |
31 | // (b==b.Parent().Recover()) have a parent. |
32 | func (b *BasicBlock) Idom() *BasicBlock { return b.dom.idom } |
33 | |
34 | // Dominees returns the list of blocks that b immediately dominates: |
35 | // its children in the dominator tree. |
36 | func (b *BasicBlock) Dominees() []*BasicBlock { return b.dom.children } |
37 | |
38 | // Dominates reports whether b dominates c. |
39 | func (b *BasicBlock) Dominates(c *BasicBlock) bool { |
40 | return b.dom.pre <= c.dom.pre && c.dom.post <= b.dom.post |
41 | } |
42 | |
43 | type byDomPreorder []*BasicBlock |
44 | |
45 | func (a byDomPreorder) Len() int { return len(a) } |
46 | func (a byDomPreorder) Swap(i, j int) { a[i], a[j] = a[j], a[i] } |
47 | func (a byDomPreorder) Less(i, j int) bool { return a[i].dom.pre < a[j].dom.pre } |
48 | |
49 | // DomPreorder returns a new slice containing the blocks of f in |
50 | // dominator tree preorder. |
51 | func (f *Function) DomPreorder() []*BasicBlock { |
52 | n := len(f.Blocks) |
53 | order := make(byDomPreorder, n) |
54 | copy(order, f.Blocks) |
55 | sort.Sort(order) |
56 | return order |
57 | } |
58 | |
59 | // domInfo contains a BasicBlock's dominance information. |
60 | type domInfo struct { |
61 | idom *BasicBlock // immediate dominator (parent in domtree) |
62 | children []*BasicBlock // nodes immediately dominated by this one |
63 | pre, post int32 // pre- and post-order numbering within domtree |
64 | } |
65 | |
66 | // ltState holds the working state for Lengauer-Tarjan algorithm |
67 | // (during which domInfo.pre is repurposed for CFG DFS preorder number). |
68 | type ltState struct { |
69 | // Each slice is indexed by b.Index. |
70 | sdom []*BasicBlock // b's semidominator |
71 | parent []*BasicBlock // b's parent in DFS traversal of CFG |
72 | ancestor []*BasicBlock // b's ancestor with least sdom |
73 | } |
74 | |
75 | // dfs implements the depth-first search part of the LT algorithm. |
76 | func (lt *ltState) dfs(v *BasicBlock, i int32, preorder []*BasicBlock) int32 { |
77 | preorder[i] = v |
78 | v.dom.pre = i // For now: DFS preorder of spanning tree of CFG |
79 | i++ |
80 | lt.sdom[v.Index] = v |
81 | lt.link(nil, v) |
82 | for _, w := range v.Succs { |
83 | if lt.sdom[w.Index] == nil { |
84 | lt.parent[w.Index] = v |
85 | i = lt.dfs(w, i, preorder) |
86 | } |
87 | } |
88 | return i |
89 | } |
90 | |
91 | // eval implements the EVAL part of the LT algorithm. |
92 | func (lt *ltState) eval(v *BasicBlock) *BasicBlock { |
93 | // TODO(adonovan): opt: do path compression per simple LT. |
94 | u := v |
95 | for ; lt.ancestor[v.Index] != nil; v = lt.ancestor[v.Index] { |
96 | if lt.sdom[v.Index].dom.pre < lt.sdom[u.Index].dom.pre { |
97 | u = v |
98 | } |
99 | } |
100 | return u |
101 | } |
102 | |
103 | // link implements the LINK part of the LT algorithm. |
104 | func (lt *ltState) link(v, w *BasicBlock) { |
105 | lt.ancestor[w.Index] = v |
106 | } |
107 | |
108 | // buildDomTree computes the dominator tree of f using the LT algorithm. |
109 | // Precondition: all blocks are reachable (e.g. optimizeBlocks has been run). |
110 | func buildDomTree(f *Function) { |
111 | // The step numbers refer to the original LT paper; the |
112 | // reordering is due to Georgiadis. |
113 | |
114 | // Clear any previous domInfo. |
115 | for _, b := range f.Blocks { |
116 | b.dom = domInfo{} |
117 | } |
118 | |
119 | n := len(f.Blocks) |
120 | // Allocate space for 5 contiguous [n]*BasicBlock arrays: |
121 | // sdom, parent, ancestor, preorder, buckets. |
122 | space := make([]*BasicBlock, 5*n) |
123 | lt := ltState{ |
124 | sdom: space[0:n], |
125 | parent: space[n : 2*n], |
126 | ancestor: space[2*n : 3*n], |
127 | } |
128 | |
129 | // Step 1. Number vertices by depth-first preorder. |
130 | preorder := space[3*n : 4*n] |
131 | root := f.Blocks[0] |
132 | prenum := lt.dfs(root, 0, preorder) |
133 | recover := f.Recover |
134 | if recover != nil { |
135 | lt.dfs(recover, prenum, preorder) |
136 | } |
137 | |
138 | buckets := space[4*n : 5*n] |
139 | copy(buckets, preorder) |
140 | |
141 | // In reverse preorder... |
142 | for i := int32(n) - 1; i > 0; i-- { |
143 | w := preorder[i] |
144 | |
145 | // Step 3. Implicitly define the immediate dominator of each node. |
146 | for v := buckets[i]; v != w; v = buckets[v.dom.pre] { |
147 | u := lt.eval(v) |
148 | if lt.sdom[u.Index].dom.pre < i { |
149 | v.dom.idom = u |
150 | } else { |
151 | v.dom.idom = w |
152 | } |
153 | } |
154 | |
155 | // Step 2. Compute the semidominators of all nodes. |
156 | lt.sdom[w.Index] = lt.parent[w.Index] |
157 | for _, v := range w.Preds { |
158 | u := lt.eval(v) |
159 | if lt.sdom[u.Index].dom.pre < lt.sdom[w.Index].dom.pre { |
160 | lt.sdom[w.Index] = lt.sdom[u.Index] |
161 | } |
162 | } |
163 | |
164 | lt.link(lt.parent[w.Index], w) |
165 | |
166 | if lt.parent[w.Index] == lt.sdom[w.Index] { |
167 | w.dom.idom = lt.parent[w.Index] |
168 | } else { |
169 | buckets[i] = buckets[lt.sdom[w.Index].dom.pre] |
170 | buckets[lt.sdom[w.Index].dom.pre] = w |
171 | } |
172 | } |
173 | |
174 | // The final 'Step 3' is now outside the loop. |
175 | for v := buckets[0]; v != root; v = buckets[v.dom.pre] { |
176 | v.dom.idom = root |
177 | } |
178 | |
179 | // Step 4. Explicitly define the immediate dominator of each |
180 | // node, in preorder. |
181 | for _, w := range preorder[1:] { |
182 | if w == root || w == recover { |
183 | w.dom.idom = nil |
184 | } else { |
185 | if w.dom.idom != lt.sdom[w.Index] { |
186 | w.dom.idom = w.dom.idom.dom.idom |
187 | } |
188 | // Calculate Children relation as inverse of Idom. |
189 | w.dom.idom.dom.children = append(w.dom.idom.dom.children, w) |
190 | } |
191 | } |
192 | |
193 | pre, post := numberDomTree(root, 0, 0) |
194 | if recover != nil { |
195 | numberDomTree(recover, pre, post) |
196 | } |
197 | |
198 | // printDomTreeDot(os.Stderr, f) // debugging |
199 | // printDomTreeText(os.Stderr, root, 0) // debugging |
200 | |
201 | if f.Prog.mode&SanityCheckFunctions != 0 { |
202 | sanityCheckDomTree(f) |
203 | } |
204 | } |
205 | |
206 | // numberDomTree sets the pre- and post-order numbers of a depth-first |
207 | // traversal of the dominator tree rooted at v. These are used to |
208 | // answer dominance queries in constant time. |
209 | func numberDomTree(v *BasicBlock, pre, post int32) (int32, int32) { |
210 | v.dom.pre = pre |
211 | pre++ |
212 | for _, child := range v.dom.children { |
213 | pre, post = numberDomTree(child, pre, post) |
214 | } |
215 | v.dom.post = post |
216 | post++ |
217 | return pre, post |
218 | } |
219 | |
220 | // Testing utilities ---------------------------------------- |
221 | |
222 | // sanityCheckDomTree checks the correctness of the dominator tree |
223 | // computed by the LT algorithm by comparing against the dominance |
224 | // relation computed by a naive Kildall-style forward dataflow |
225 | // analysis (Algorithm 10.16 from the "Dragon" book). |
226 | func sanityCheckDomTree(f *Function) { |
227 | n := len(f.Blocks) |
228 | |
229 | // D[i] is the set of blocks that dominate f.Blocks[i], |
230 | // represented as a bit-set of block indices. |
231 | D := make([]big.Int, n) |
232 | |
233 | one := big.NewInt(1) |
234 | |
235 | // all is the set of all blocks; constant. |
236 | var all big.Int |
237 | all.Set(one).Lsh(&all, uint(n)).Sub(&all, one) |
238 | |
239 | // Initialization. |
240 | for i, b := range f.Blocks { |
241 | if i == 0 || b == f.Recover { |
242 | // A root is dominated only by itself. |
243 | D[i].SetBit(&D[0], 0, 1) |
244 | } else { |
245 | // All other blocks are (initially) dominated |
246 | // by every block. |
247 | D[i].Set(&all) |
248 | } |
249 | } |
250 | |
251 | // Iteration until fixed point. |
252 | for changed := true; changed; { |
253 | changed = false |
254 | for i, b := range f.Blocks { |
255 | if i == 0 || b == f.Recover { |
256 | continue |
257 | } |
258 | // Compute intersection across predecessors. |
259 | var x big.Int |
260 | x.Set(&all) |
261 | for _, pred := range b.Preds { |
262 | x.And(&x, &D[pred.Index]) |
263 | } |
264 | x.SetBit(&x, i, 1) // a block always dominates itself. |
265 | if D[i].Cmp(&x) != 0 { |
266 | D[i].Set(&x) |
267 | changed = true |
268 | } |
269 | } |
270 | } |
271 | |
272 | // Check the entire relation. O(n^2). |
273 | // The Recover block (if any) must be treated specially so we skip it. |
274 | ok := true |
275 | for i := 0; i < n; i++ { |
276 | for j := 0; j < n; j++ { |
277 | b, c := f.Blocks[i], f.Blocks[j] |
278 | if c == f.Recover { |
279 | continue |
280 | } |
281 | actual := b.Dominates(c) |
282 | expected := D[j].Bit(i) == 1 |
283 | if actual != expected { |
284 | fmt.Fprintf(os.Stderr, "dominates(%s, %s)==%t, want %t\n", b, c, actual, expected) |
285 | ok = false |
286 | } |
287 | } |
288 | } |
289 | |
290 | preorder := f.DomPreorder() |
291 | for _, b := range f.Blocks { |
292 | if got := preorder[b.dom.pre]; got != b { |
293 | fmt.Fprintf(os.Stderr, "preorder[%d]==%s, want %s\n", b.dom.pre, got, b) |
294 | ok = false |
295 | } |
296 | } |
297 | |
298 | if !ok { |
299 | panic("sanityCheckDomTree failed for " + f.String()) |
300 | } |
301 | |
302 | } |
303 | |
304 | // Printing functions ---------------------------------------- |
305 | |
306 | // printDomTreeText prints the dominator tree as text, using indentation. |
307 | func printDomTreeText(buf *bytes.Buffer, v *BasicBlock, indent int) { |
308 | fmt.Fprintf(buf, "%*s%s\n", 4*indent, "", v) |
309 | for _, child := range v.dom.children { |
310 | printDomTreeText(buf, child, indent+1) |
311 | } |
312 | } |
313 | |
314 | // printDomTreeDot prints the dominator tree of f in AT&T GraphViz |
315 | // (.dot) format. |
316 | func printDomTreeDot(buf *bytes.Buffer, f *Function) { |
317 | fmt.Fprintln(buf, "//", f) |
318 | fmt.Fprintln(buf, "digraph domtree {") |
319 | for i, b := range f.Blocks { |
320 | v := b.dom |
321 | fmt.Fprintf(buf, "\tn%d [label=\"%s (%d, %d)\",shape=\"rectangle\"];\n", v.pre, b, v.pre, v.post) |
322 | // TODO(adonovan): improve appearance of edges |
323 | // belonging to both dominator tree and CFG. |
324 | |
325 | // Dominator tree edge. |
326 | if i != 0 { |
327 | fmt.Fprintf(buf, "\tn%d -> n%d [style=\"solid\",weight=100];\n", v.idom.dom.pre, v.pre) |
328 | } |
329 | // CFG edges. |
330 | for _, pred := range b.Preds { |
331 | fmt.Fprintf(buf, "\tn%d -> n%d [style=\"dotted\",weight=0];\n", pred.dom.pre, v.pre) |
332 | } |
333 | } |
334 | fmt.Fprintln(buf, "}") |
335 | } |
336 |
Members