1 | // Copyright 2014 The Go Authors. All rights reserved. |
---|---|
2 | // Use of this source code is governed by a BSD-style |
3 | // license that can be found in the LICENSE file. |
4 | |
5 | // Package typeutil defines various utilities for types, such as Map, |
6 | // a mapping from types.Type to interface{} values. |
7 | package typeutil // import "golang.org/x/tools/go/types/typeutil" |
8 | |
9 | import ( |
10 | "bytes" |
11 | "fmt" |
12 | "go/types" |
13 | "reflect" |
14 | |
15 | "golang.org/x/tools/internal/typeparams" |
16 | ) |
17 | |
18 | // Map is a hash-table-based mapping from types (types.Type) to |
19 | // arbitrary interface{} values. The concrete types that implement |
20 | // the Type interface are pointers. Since they are not canonicalized, |
21 | // == cannot be used to check for equivalence, and thus we cannot |
22 | // simply use a Go map. |
23 | // |
24 | // Just as with map[K]V, a nil *Map is a valid empty map. |
25 | // |
26 | // Not thread-safe. |
27 | type Map struct { |
28 | hasher Hasher // shared by many Maps |
29 | table map[uint32][]entry // maps hash to bucket; entry.key==nil means unused |
30 | length int // number of map entries |
31 | } |
32 | |
33 | // entry is an entry (key/value association) in a hash bucket. |
34 | type entry struct { |
35 | key types.Type |
36 | value interface{} |
37 | } |
38 | |
39 | // SetHasher sets the hasher used by Map. |
40 | // |
41 | // All Hashers are functionally equivalent but contain internal state |
42 | // used to cache the results of hashing previously seen types. |
43 | // |
44 | // A single Hasher created by MakeHasher() may be shared among many |
45 | // Maps. This is recommended if the instances have many keys in |
46 | // common, as it will amortize the cost of hash computation. |
47 | // |
48 | // A Hasher may grow without bound as new types are seen. Even when a |
49 | // type is deleted from the map, the Hasher never shrinks, since other |
50 | // types in the map may reference the deleted type indirectly. |
51 | // |
52 | // Hashers are not thread-safe, and read-only operations such as |
53 | // Map.Lookup require updates to the hasher, so a full Mutex lock (not a |
54 | // read-lock) is require around all Map operations if a shared |
55 | // hasher is accessed from multiple threads. |
56 | // |
57 | // If SetHasher is not called, the Map will create a private hasher at |
58 | // the first call to Insert. |
59 | func (m *Map) SetHasher(hasher Hasher) { |
60 | m.hasher = hasher |
61 | } |
62 | |
63 | // Delete removes the entry with the given key, if any. |
64 | // It returns true if the entry was found. |
65 | func (m *Map) Delete(key types.Type) bool { |
66 | if m != nil && m.table != nil { |
67 | hash := m.hasher.Hash(key) |
68 | bucket := m.table[hash] |
69 | for i, e := range bucket { |
70 | if e.key != nil && types.Identical(key, e.key) { |
71 | // We can't compact the bucket as it |
72 | // would disturb iterators. |
73 | bucket[i] = entry{} |
74 | m.length-- |
75 | return true |
76 | } |
77 | } |
78 | } |
79 | return false |
80 | } |
81 | |
82 | // At returns the map entry for the given key. |
83 | // The result is nil if the entry is not present. |
84 | func (m *Map) At(key types.Type) interface{} { |
85 | if m != nil && m.table != nil { |
86 | for _, e := range m.table[m.hasher.Hash(key)] { |
87 | if e.key != nil && types.Identical(key, e.key) { |
88 | return e.value |
89 | } |
90 | } |
91 | } |
92 | return nil |
93 | } |
94 | |
95 | // Set sets the map entry for key to val, |
96 | // and returns the previous entry, if any. |
97 | func (m *Map) Set(key types.Type, value interface{}) (prev interface{}) { |
98 | if m.table != nil { |
99 | hash := m.hasher.Hash(key) |
100 | bucket := m.table[hash] |
101 | var hole *entry |
102 | for i, e := range bucket { |
103 | if e.key == nil { |
104 | hole = &bucket[i] |
105 | } else if types.Identical(key, e.key) { |
106 | prev = e.value |
107 | bucket[i].value = value |
108 | return |
109 | } |
110 | } |
111 | |
112 | if hole != nil { |
113 | *hole = entry{key, value} // overwrite deleted entry |
114 | } else { |
115 | m.table[hash] = append(bucket, entry{key, value}) |
116 | } |
117 | } else { |
118 | if m.hasher.memo == nil { |
119 | m.hasher = MakeHasher() |
120 | } |
121 | hash := m.hasher.Hash(key) |
122 | m.table = map[uint32][]entry{hash: {entry{key, value}}} |
123 | } |
124 | |
125 | m.length++ |
126 | return |
127 | } |
128 | |
129 | // Len returns the number of map entries. |
130 | func (m *Map) Len() int { |
131 | if m != nil { |
132 | return m.length |
133 | } |
134 | return 0 |
135 | } |
136 | |
137 | // Iterate calls function f on each entry in the map in unspecified order. |
138 | // |
139 | // If f should mutate the map, Iterate provides the same guarantees as |
140 | // Go maps: if f deletes a map entry that Iterate has not yet reached, |
141 | // f will not be invoked for it, but if f inserts a map entry that |
142 | // Iterate has not yet reached, whether or not f will be invoked for |
143 | // it is unspecified. |
144 | func (m *Map) Iterate(f func(key types.Type, value interface{})) { |
145 | if m != nil { |
146 | for _, bucket := range m.table { |
147 | for _, e := range bucket { |
148 | if e.key != nil { |
149 | f(e.key, e.value) |
150 | } |
151 | } |
152 | } |
153 | } |
154 | } |
155 | |
156 | // Keys returns a new slice containing the set of map keys. |
157 | // The order is unspecified. |
158 | func (m *Map) Keys() []types.Type { |
159 | keys := make([]types.Type, 0, m.Len()) |
160 | m.Iterate(func(key types.Type, _ interface{}) { |
161 | keys = append(keys, key) |
162 | }) |
163 | return keys |
164 | } |
165 | |
166 | func (m *Map) toString(values bool) string { |
167 | if m == nil { |
168 | return "{}" |
169 | } |
170 | var buf bytes.Buffer |
171 | fmt.Fprint(&buf, "{") |
172 | sep := "" |
173 | m.Iterate(func(key types.Type, value interface{}) { |
174 | fmt.Fprint(&buf, sep) |
175 | sep = ", " |
176 | fmt.Fprint(&buf, key) |
177 | if values { |
178 | fmt.Fprintf(&buf, ": %q", value) |
179 | } |
180 | }) |
181 | fmt.Fprint(&buf, "}") |
182 | return buf.String() |
183 | } |
184 | |
185 | // String returns a string representation of the map's entries. |
186 | // Values are printed using fmt.Sprintf("%v", v). |
187 | // Order is unspecified. |
188 | func (m *Map) String() string { |
189 | return m.toString(true) |
190 | } |
191 | |
192 | // KeysString returns a string representation of the map's key set. |
193 | // Order is unspecified. |
194 | func (m *Map) KeysString() string { |
195 | return m.toString(false) |
196 | } |
197 | |
198 | //////////////////////////////////////////////////////////////////////// |
199 | // Hasher |
200 | |
201 | // A Hasher maps each type to its hash value. |
202 | // For efficiency, a hasher uses memoization; thus its memory |
203 | // footprint grows monotonically over time. |
204 | // Hashers are not thread-safe. |
205 | // Hashers have reference semantics. |
206 | // Call MakeHasher to create a Hasher. |
207 | type Hasher struct { |
208 | memo map[types.Type]uint32 |
209 | |
210 | // ptrMap records pointer identity. |
211 | ptrMap map[interface{}]uint32 |
212 | |
213 | // sigTParams holds type parameters from the signature being hashed. |
214 | // Signatures are considered identical modulo renaming of type parameters, so |
215 | // within the scope of a signature type the identity of the signature's type |
216 | // parameters is just their index. |
217 | // |
218 | // Since the language does not currently support referring to uninstantiated |
219 | // generic types or functions, and instantiated signatures do not have type |
220 | // parameter lists, we should never encounter a second non-empty type |
221 | // parameter list when hashing a generic signature. |
222 | sigTParams *typeparams.TypeParamList |
223 | } |
224 | |
225 | // MakeHasher returns a new Hasher instance. |
226 | func MakeHasher() Hasher { |
227 | return Hasher{ |
228 | memo: make(map[types.Type]uint32), |
229 | ptrMap: make(map[interface{}]uint32), |
230 | sigTParams: nil, |
231 | } |
232 | } |
233 | |
234 | // Hash computes a hash value for the given type t such that |
235 | // Identical(t, t') => Hash(t) == Hash(t'). |
236 | func (h Hasher) Hash(t types.Type) uint32 { |
237 | hash, ok := h.memo[t] |
238 | if !ok { |
239 | hash = h.hashFor(t) |
240 | h.memo[t] = hash |
241 | } |
242 | return hash |
243 | } |
244 | |
245 | // hashString computes the Fowler–Noll–Vo hash of s. |
246 | func hashString(s string) uint32 { |
247 | var h uint32 |
248 | for i := 0; i < len(s); i++ { |
249 | h ^= uint32(s[i]) |
250 | h *= 16777619 |
251 | } |
252 | return h |
253 | } |
254 | |
255 | // hashFor computes the hash of t. |
256 | func (h Hasher) hashFor(t types.Type) uint32 { |
257 | // See Identical for rationale. |
258 | switch t := t.(type) { |
259 | case *types.Basic: |
260 | return uint32(t.Kind()) |
261 | |
262 | case *types.Array: |
263 | return 9043 + 2*uint32(t.Len()) + 3*h.Hash(t.Elem()) |
264 | |
265 | case *types.Slice: |
266 | return 9049 + 2*h.Hash(t.Elem()) |
267 | |
268 | case *types.Struct: |
269 | var hash uint32 = 9059 |
270 | for i, n := 0, t.NumFields(); i < n; i++ { |
271 | f := t.Field(i) |
272 | if f.Anonymous() { |
273 | hash += 8861 |
274 | } |
275 | hash += hashString(t.Tag(i)) |
276 | hash += hashString(f.Name()) // (ignore f.Pkg) |
277 | hash += h.Hash(f.Type()) |
278 | } |
279 | return hash |
280 | |
281 | case *types.Pointer: |
282 | return 9067 + 2*h.Hash(t.Elem()) |
283 | |
284 | case *types.Signature: |
285 | var hash uint32 = 9091 |
286 | if t.Variadic() { |
287 | hash *= 8863 |
288 | } |
289 | |
290 | // Use a separate hasher for types inside of the signature, where type |
291 | // parameter identity is modified to be (index, constraint). We must use a |
292 | // new memo for this hasher as type identity may be affected by this |
293 | // masking. For example, in func[T any](*T), the identity of *T depends on |
294 | // whether we are mapping the argument in isolation, or recursively as part |
295 | // of hashing the signature. |
296 | // |
297 | // We should never encounter a generic signature while hashing another |
298 | // generic signature, but defensively set sigTParams only if h.mask is |
299 | // unset. |
300 | tparams := typeparams.ForSignature(t) |
301 | if h.sigTParams == nil && tparams.Len() != 0 { |
302 | h = Hasher{ |
303 | // There may be something more efficient than discarding the existing |
304 | // memo, but it would require detecting whether types are 'tainted' by |
305 | // references to type parameters. |
306 | memo: make(map[types.Type]uint32), |
307 | // Re-using ptrMap ensures that pointer identity is preserved in this |
308 | // hasher. |
309 | ptrMap: h.ptrMap, |
310 | sigTParams: tparams, |
311 | } |
312 | } |
313 | |
314 | for i := 0; i < tparams.Len(); i++ { |
315 | tparam := tparams.At(i) |
316 | hash += 7 * h.Hash(tparam.Constraint()) |
317 | } |
318 | |
319 | return hash + 3*h.hashTuple(t.Params()) + 5*h.hashTuple(t.Results()) |
320 | |
321 | case *typeparams.Union: |
322 | return h.hashUnion(t) |
323 | |
324 | case *types.Interface: |
325 | // Interfaces are identical if they have the same set of methods, with |
326 | // identical names and types, and they have the same set of type |
327 | // restrictions. See go/types.identical for more details. |
328 | var hash uint32 = 9103 |
329 | |
330 | // Hash methods. |
331 | for i, n := 0, t.NumMethods(); i < n; i++ { |
332 | // Method order is not significant. |
333 | // Ignore m.Pkg(). |
334 | m := t.Method(i) |
335 | // Use shallow hash on method signature to |
336 | // avoid anonymous interface cycles. |
337 | hash += 3*hashString(m.Name()) + 5*h.shallowHash(m.Type()) |
338 | } |
339 | |
340 | // Hash type restrictions. |
341 | terms, err := typeparams.InterfaceTermSet(t) |
342 | // if err != nil t has invalid type restrictions. |
343 | if err == nil { |
344 | hash += h.hashTermSet(terms) |
345 | } |
346 | |
347 | return hash |
348 | |
349 | case *types.Map: |
350 | return 9109 + 2*h.Hash(t.Key()) + 3*h.Hash(t.Elem()) |
351 | |
352 | case *types.Chan: |
353 | return 9127 + 2*uint32(t.Dir()) + 3*h.Hash(t.Elem()) |
354 | |
355 | case *types.Named: |
356 | hash := h.hashPtr(t.Obj()) |
357 | targs := typeparams.NamedTypeArgs(t) |
358 | for i := 0; i < targs.Len(); i++ { |
359 | targ := targs.At(i) |
360 | hash += 2 * h.Hash(targ) |
361 | } |
362 | return hash |
363 | |
364 | case *typeparams.TypeParam: |
365 | return h.hashTypeParam(t) |
366 | |
367 | case *types.Tuple: |
368 | return h.hashTuple(t) |
369 | } |
370 | |
371 | panic(fmt.Sprintf("%T: %v", t, t)) |
372 | } |
373 | |
374 | func (h Hasher) hashTuple(tuple *types.Tuple) uint32 { |
375 | // See go/types.identicalTypes for rationale. |
376 | n := tuple.Len() |
377 | hash := 9137 + 2*uint32(n) |
378 | for i := 0; i < n; i++ { |
379 | hash += 3 * h.Hash(tuple.At(i).Type()) |
380 | } |
381 | return hash |
382 | } |
383 | |
384 | func (h Hasher) hashUnion(t *typeparams.Union) uint32 { |
385 | // Hash type restrictions. |
386 | terms, err := typeparams.UnionTermSet(t) |
387 | // if err != nil t has invalid type restrictions. Fall back on a non-zero |
388 | // hash. |
389 | if err != nil { |
390 | return 9151 |
391 | } |
392 | return h.hashTermSet(terms) |
393 | } |
394 | |
395 | func (h Hasher) hashTermSet(terms []*typeparams.Term) uint32 { |
396 | hash := 9157 + 2*uint32(len(terms)) |
397 | for _, term := range terms { |
398 | // term order is not significant. |
399 | termHash := h.Hash(term.Type()) |
400 | if term.Tilde() { |
401 | termHash *= 9161 |
402 | } |
403 | hash += 3 * termHash |
404 | } |
405 | return hash |
406 | } |
407 | |
408 | // hashTypeParam returns a hash of the type parameter t, with a hash value |
409 | // depending on whether t is contained in h.sigTParams. |
410 | // |
411 | // If h.sigTParams is set and contains t, then we are in the process of hashing |
412 | // a signature, and the hash value of t must depend only on t's index and |
413 | // constraint: signatures are considered identical modulo type parameter |
414 | // renaming. To avoid infinite recursion, we only hash the type parameter |
415 | // index, and rely on types.Identical to handle signatures where constraints |
416 | // are not identical. |
417 | // |
418 | // Otherwise the hash of t depends only on t's pointer identity. |
419 | func (h Hasher) hashTypeParam(t *typeparams.TypeParam) uint32 { |
420 | if h.sigTParams != nil { |
421 | i := t.Index() |
422 | if i >= 0 && i < h.sigTParams.Len() && t == h.sigTParams.At(i) { |
423 | return 9173 + 3*uint32(i) |
424 | } |
425 | } |
426 | return h.hashPtr(t.Obj()) |
427 | } |
428 | |
429 | // hashPtr hashes the pointer identity of ptr. It uses h.ptrMap to ensure that |
430 | // pointers values are not dependent on the GC. |
431 | func (h Hasher) hashPtr(ptr interface{}) uint32 { |
432 | if hash, ok := h.ptrMap[ptr]; ok { |
433 | return hash |
434 | } |
435 | hash := uint32(reflect.ValueOf(ptr).Pointer()) |
436 | h.ptrMap[ptr] = hash |
437 | return hash |
438 | } |
439 | |
440 | // shallowHash computes a hash of t without looking at any of its |
441 | // element Types, to avoid potential anonymous cycles in the types of |
442 | // interface methods. |
443 | // |
444 | // When an unnamed non-empty interface type appears anywhere among the |
445 | // arguments or results of an interface method, there is a potential |
446 | // for endless recursion. Consider: |
447 | // |
448 | // type X interface { m() []*interface { X } } |
449 | // |
450 | // The problem is that the Methods of the interface in m's result type |
451 | // include m itself; there is no mention of the named type X that |
452 | // might help us break the cycle. |
453 | // (See comment in go/types.identical, case *Interface, for more.) |
454 | func (h Hasher) shallowHash(t types.Type) uint32 { |
455 | // t is the type of an interface method (Signature), |
456 | // its params or results (Tuples), or their immediate |
457 | // elements (mostly Slice, Pointer, Basic, Named), |
458 | // so there's no need to optimize anything else. |
459 | switch t := t.(type) { |
460 | case *types.Signature: |
461 | var hash uint32 = 604171 |
462 | if t.Variadic() { |
463 | hash *= 971767 |
464 | } |
465 | // The Signature/Tuple recursion is always finite |
466 | // and invariably shallow. |
467 | return hash + 1062599*h.shallowHash(t.Params()) + 1282529*h.shallowHash(t.Results()) |
468 | |
469 | case *types.Tuple: |
470 | n := t.Len() |
471 | hash := 9137 + 2*uint32(n) |
472 | for i := 0; i < n; i++ { |
473 | hash += 53471161 * h.shallowHash(t.At(i).Type()) |
474 | } |
475 | return hash |
476 | |
477 | case *types.Basic: |
478 | return 45212177 * uint32(t.Kind()) |
479 | |
480 | case *types.Array: |
481 | return 1524181 + 2*uint32(t.Len()) |
482 | |
483 | case *types.Slice: |
484 | return 2690201 |
485 | |
486 | case *types.Struct: |
487 | return 3326489 |
488 | |
489 | case *types.Pointer: |
490 | return 4393139 |
491 | |
492 | case *typeparams.Union: |
493 | return 562448657 |
494 | |
495 | case *types.Interface: |
496 | return 2124679 // no recursion here |
497 | |
498 | case *types.Map: |
499 | return 9109 |
500 | |
501 | case *types.Chan: |
502 | return 9127 |
503 | |
504 | case *types.Named: |
505 | return h.hashPtr(t.Obj()) |
506 | |
507 | case *typeparams.TypeParam: |
508 | return h.hashPtr(t.Obj()) |
509 | } |
510 | panic(fmt.Sprintf("shallowHash: %T: %v", t, t)) |
511 | } |
512 |
Members