1 | // Copyright 2022 The Go Authors. All rights reserved. |
---|---|
2 | // Use of this source code is governed by a BSD-style |
3 | // license that can be found in the LICENSE file. |
4 | |
5 | package lcs |
6 | |
7 | import ( |
8 | "log" |
9 | "sort" |
10 | ) |
11 | |
12 | // lcs is a longest common sequence |
13 | type lcs []diag |
14 | |
15 | // A diag is a piece of the edit graph where A[X+i] == B[Y+i], for 0<=i<Len. |
16 | // All computed diagonals are parts of a longest common subsequence. |
17 | type diag struct { |
18 | X, Y int |
19 | Len int |
20 | } |
21 | |
22 | // sort sorts in place, by lowest X, and if tied, inversely by Len |
23 | func (l lcs) sort() lcs { |
24 | sort.Slice(l, func(i, j int) bool { |
25 | if l[i].X != l[j].X { |
26 | return l[i].X < l[j].X |
27 | } |
28 | return l[i].Len > l[j].Len |
29 | }) |
30 | return l |
31 | } |
32 | |
33 | // validate that the elements of the lcs do not overlap |
34 | // (can only happen when the two-sided algorithm ends early) |
35 | // expects the lcs to be sorted |
36 | func (l lcs) valid() bool { |
37 | for i := 1; i < len(l); i++ { |
38 | if l[i-1].X+l[i-1].Len > l[i].X { |
39 | return false |
40 | } |
41 | if l[i-1].Y+l[i-1].Len > l[i].Y { |
42 | return false |
43 | } |
44 | } |
45 | return true |
46 | } |
47 | |
48 | // repair overlapping lcs |
49 | // only called if two-sided stops early |
50 | func (l lcs) fix() lcs { |
51 | // from the set of diagonals in l, find a maximal non-conflicting set |
52 | // this problem may be NP-complete, but we use a greedy heuristic, |
53 | // which is quadratic, but with a better data structure, could be D log D. |
54 | // indepedent is not enough: {0,3,1} and {3,0,2} can't both occur in an lcs |
55 | // which has to have monotone x and y |
56 | if len(l) == 0 { |
57 | return nil |
58 | } |
59 | sort.Slice(l, func(i, j int) bool { return l[i].Len > l[j].Len }) |
60 | tmp := make(lcs, 0, len(l)) |
61 | tmp = append(tmp, l[0]) |
62 | for i := 1; i < len(l); i++ { |
63 | var dir direction |
64 | nxt := l[i] |
65 | for _, in := range tmp { |
66 | if dir, nxt = overlap(in, nxt); dir == empty || dir == bad { |
67 | break |
68 | } |
69 | } |
70 | if nxt.Len > 0 && dir != bad { |
71 | tmp = append(tmp, nxt) |
72 | } |
73 | } |
74 | tmp.sort() |
75 | if false && !tmp.valid() { // debug checking |
76 | log.Fatalf("here %d", len(tmp)) |
77 | } |
78 | return tmp |
79 | } |
80 | |
81 | type direction int |
82 | |
83 | const ( |
84 | empty direction = iota // diag is empty (so not in lcs) |
85 | leftdown // proposed acceptably to the left and below |
86 | rightup // proposed diag is acceptably to the right and above |
87 | bad // proposed diag is inconsistent with the lcs so far |
88 | ) |
89 | |
90 | // overlap trims the proposed diag prop so it doesn't overlap with |
91 | // the existing diag that has already been added to the lcs. |
92 | func overlap(exist, prop diag) (direction, diag) { |
93 | if prop.X <= exist.X && exist.X < prop.X+prop.Len { |
94 | // remove the end of prop where it overlaps with the X end of exist |
95 | delta := prop.X + prop.Len - exist.X |
96 | prop.Len -= delta |
97 | if prop.Len <= 0 { |
98 | return empty, prop |
99 | } |
100 | } |
101 | if exist.X <= prop.X && prop.X < exist.X+exist.Len { |
102 | // remove the beginning of prop where overlaps with exist |
103 | delta := exist.X + exist.Len - prop.X |
104 | prop.Len -= delta |
105 | if prop.Len <= 0 { |
106 | return empty, prop |
107 | } |
108 | prop.X += delta |
109 | prop.Y += delta |
110 | } |
111 | if prop.Y <= exist.Y && exist.Y < prop.Y+prop.Len { |
112 | // remove the end of prop that overlaps (in Y) with exist |
113 | delta := prop.Y + prop.Len - exist.Y |
114 | prop.Len -= delta |
115 | if prop.Len <= 0 { |
116 | return empty, prop |
117 | } |
118 | } |
119 | if exist.Y <= prop.Y && prop.Y < exist.Y+exist.Len { |
120 | // remove the beginning of peop that overlaps with exist |
121 | delta := exist.Y + exist.Len - prop.Y |
122 | prop.Len -= delta |
123 | if prop.Len <= 0 { |
124 | return empty, prop |
125 | } |
126 | prop.X += delta // no test reaches this code |
127 | prop.Y += delta |
128 | } |
129 | if prop.X+prop.Len <= exist.X && prop.Y+prop.Len <= exist.Y { |
130 | return leftdown, prop |
131 | } |
132 | if exist.X+exist.Len <= prop.X && exist.Y+exist.Len <= prop.Y { |
133 | return rightup, prop |
134 | } |
135 | // prop can't be in an lcs that contains exist |
136 | return bad, prop |
137 | } |
138 | |
139 | // manipulating Diag and lcs |
140 | |
141 | // prepend a diagonal (x,y)-(x+1,y+1) segment either to an empty lcs |
142 | // or to its first Diag. prepend is only called to extend diagonals |
143 | // the backward direction. |
144 | func (lcs lcs) prepend(x, y int) lcs { |
145 | if len(lcs) > 0 { |
146 | d := &lcs[0] |
147 | if int(d.X) == x+1 && int(d.Y) == y+1 { |
148 | // extend the diagonal down and to the left |
149 | d.X, d.Y = int(x), int(y) |
150 | d.Len++ |
151 | return lcs |
152 | } |
153 | } |
154 | |
155 | r := diag{X: int(x), Y: int(y), Len: 1} |
156 | lcs = append([]diag{r}, lcs...) |
157 | return lcs |
158 | } |
159 | |
160 | // append appends a diagonal, or extends the existing one. |
161 | // by adding the edge (x,y)-(x+1.y+1). append is only called |
162 | // to extend diagonals in the forward direction. |
163 | func (lcs lcs) append(x, y int) lcs { |
164 | if len(lcs) > 0 { |
165 | last := &lcs[len(lcs)-1] |
166 | // Expand last element if adjoining. |
167 | if last.X+last.Len == x && last.Y+last.Len == y { |
168 | last.Len++ |
169 | return lcs |
170 | } |
171 | } |
172 | |
173 | return append(lcs, diag{X: x, Y: y, Len: 1}) |
174 | } |
175 | |
176 | // enforce constraint on d, k |
177 | func ok(d, k int) bool { |
178 | return d >= 0 && -d <= k && k <= d |
179 | } |
180 |
Members