1 | // Copyright 2021 The Go Authors. All rights reserved. |
---|---|
2 | // Use of this source code is governed by a BSD-style |
3 | // license that can be found in the LICENSE file. |
4 | |
5 | // Package typeparams contains common utilities for writing tools that interact |
6 | // with generic Go code, as introduced with Go 1.18. |
7 | // |
8 | // Many of the types and functions in this package are proxies for the new APIs |
9 | // introduced in the standard library with Go 1.18. For example, the |
10 | // typeparams.Union type is an alias for go/types.Union, and the ForTypeSpec |
11 | // function returns the value of the go/ast.TypeSpec.TypeParams field. At Go |
12 | // versions older than 1.18 these helpers are implemented as stubs, allowing |
13 | // users of this package to write code that handles generic constructs inline, |
14 | // even if the Go version being used to compile does not support generics. |
15 | // |
16 | // Additionally, this package contains common utilities for working with the |
17 | // new generic constructs, to supplement the standard library APIs. Notably, |
18 | // the StructuralTerms API computes a minimal representation of the structural |
19 | // restrictions on a type parameter. |
20 | // |
21 | // An external version of these APIs is available in the |
22 | // golang.org/x/exp/typeparams module. |
23 | package typeparams |
24 | |
25 | import ( |
26 | "go/ast" |
27 | "go/token" |
28 | "go/types" |
29 | ) |
30 | |
31 | // UnpackIndexExpr extracts data from AST nodes that represent index |
32 | // expressions. |
33 | // |
34 | // For an ast.IndexExpr, the resulting indices slice will contain exactly one |
35 | // index expression. For an ast.IndexListExpr (go1.18+), it may have a variable |
36 | // number of index expressions. |
37 | // |
38 | // For nodes that don't represent index expressions, the first return value of |
39 | // UnpackIndexExpr will be nil. |
40 | func UnpackIndexExpr(n ast.Node) (x ast.Expr, lbrack token.Pos, indices []ast.Expr, rbrack token.Pos) { |
41 | switch e := n.(type) { |
42 | case *ast.IndexExpr: |
43 | return e.X, e.Lbrack, []ast.Expr{e.Index}, e.Rbrack |
44 | case *IndexListExpr: |
45 | return e.X, e.Lbrack, e.Indices, e.Rbrack |
46 | } |
47 | return nil, token.NoPos, nil, token.NoPos |
48 | } |
49 | |
50 | // PackIndexExpr returns an *ast.IndexExpr or *ast.IndexListExpr, depending on |
51 | // the cardinality of indices. Calling PackIndexExpr with len(indices) == 0 |
52 | // will panic. |
53 | func PackIndexExpr(x ast.Expr, lbrack token.Pos, indices []ast.Expr, rbrack token.Pos) ast.Expr { |
54 | switch len(indices) { |
55 | case 0: |
56 | panic("empty indices") |
57 | case 1: |
58 | return &ast.IndexExpr{ |
59 | X: x, |
60 | Lbrack: lbrack, |
61 | Index: indices[0], |
62 | Rbrack: rbrack, |
63 | } |
64 | default: |
65 | return &IndexListExpr{ |
66 | X: x, |
67 | Lbrack: lbrack, |
68 | Indices: indices, |
69 | Rbrack: rbrack, |
70 | } |
71 | } |
72 | } |
73 | |
74 | // IsTypeParam reports whether t is a type parameter. |
75 | func IsTypeParam(t types.Type) bool { |
76 | _, ok := t.(*TypeParam) |
77 | return ok |
78 | } |
79 | |
80 | // OriginMethod returns the origin method associated with the method fn. |
81 | // For methods on a non-generic receiver base type, this is just |
82 | // fn. However, for methods with a generic receiver, OriginMethod returns the |
83 | // corresponding method in the method set of the origin type. |
84 | // |
85 | // As a special case, if fn is not a method (has no receiver), OriginMethod |
86 | // returns fn. |
87 | func OriginMethod(fn *types.Func) *types.Func { |
88 | recv := fn.Type().(*types.Signature).Recv() |
89 | if recv == nil { |
90 | |
91 | return fn |
92 | } |
93 | base := recv.Type() |
94 | p, isPtr := base.(*types.Pointer) |
95 | if isPtr { |
96 | base = p.Elem() |
97 | } |
98 | named, isNamed := base.(*types.Named) |
99 | if !isNamed { |
100 | // Receiver is a *types.Interface. |
101 | return fn |
102 | } |
103 | if ForNamed(named).Len() == 0 { |
104 | // Receiver base has no type parameters, so we can avoid the lookup below. |
105 | return fn |
106 | } |
107 | orig := NamedTypeOrigin(named) |
108 | gfn, _, _ := types.LookupFieldOrMethod(orig, true, fn.Pkg(), fn.Name()) |
109 | return gfn.(*types.Func) |
110 | } |
111 | |
112 | // GenericAssignableTo is a generalization of types.AssignableTo that |
113 | // implements the following rule for uninstantiated generic types: |
114 | // |
115 | // If V and T are generic named types, then V is considered assignable to T if, |
116 | // for every possible instantation of V[A_1, ..., A_N], the instantiation |
117 | // T[A_1, ..., A_N] is valid and V[A_1, ..., A_N] implements T[A_1, ..., A_N]. |
118 | // |
119 | // If T has structural constraints, they must be satisfied by V. |
120 | // |
121 | // For example, consider the following type declarations: |
122 | // |
123 | // type Interface[T any] interface { |
124 | // Accept(T) |
125 | // } |
126 | // |
127 | // type Container[T any] struct { |
128 | // Element T |
129 | // } |
130 | // |
131 | // func (c Container[T]) Accept(t T) { c.Element = t } |
132 | // |
133 | // In this case, GenericAssignableTo reports that instantiations of Container |
134 | // are assignable to the corresponding instantiation of Interface. |
135 | func GenericAssignableTo(ctxt *Context, V, T types.Type) bool { |
136 | // If V and T are not both named, or do not have matching non-empty type |
137 | // parameter lists, fall back on types.AssignableTo. |
138 | |
139 | VN, Vnamed := V.(*types.Named) |
140 | TN, Tnamed := T.(*types.Named) |
141 | if !Vnamed || !Tnamed { |
142 | return types.AssignableTo(V, T) |
143 | } |
144 | |
145 | vtparams := ForNamed(VN) |
146 | ttparams := ForNamed(TN) |
147 | if vtparams.Len() == 0 || vtparams.Len() != ttparams.Len() || NamedTypeArgs(VN).Len() != 0 || NamedTypeArgs(TN).Len() != 0 { |
148 | return types.AssignableTo(V, T) |
149 | } |
150 | |
151 | // V and T have the same (non-zero) number of type params. Instantiate both |
152 | // with the type parameters of V. This must always succeed for V, and will |
153 | // succeed for T if and only if the type set of each type parameter of V is a |
154 | // subset of the type set of the corresponding type parameter of T, meaning |
155 | // that every instantiation of V corresponds to a valid instantiation of T. |
156 | |
157 | // Minor optimization: ensure we share a context across the two |
158 | // instantiations below. |
159 | if ctxt == nil { |
160 | ctxt = NewContext() |
161 | } |
162 | |
163 | var targs []types.Type |
164 | for i := 0; i < vtparams.Len(); i++ { |
165 | targs = append(targs, vtparams.At(i)) |
166 | } |
167 | |
168 | vinst, err := Instantiate(ctxt, V, targs, true) |
169 | if err != nil { |
170 | panic("type parameters should satisfy their own constraints") |
171 | } |
172 | |
173 | tinst, err := Instantiate(ctxt, T, targs, true) |
174 | if err != nil { |
175 | return false |
176 | } |
177 | |
178 | return types.AssignableTo(vinst, tinst) |
179 | } |
180 |
Members