1 | // Copyright 2022 The Go Authors. All rights reserved. |
---|---|
2 | // Use of this source code is governed by a BSD-style |
3 | // license that can be found in the LICENSE file. |
4 | |
5 | package typeparams |
6 | |
7 | import ( |
8 | "go/types" |
9 | ) |
10 | |
11 | // CoreType returns the core type of T or nil if T does not have a core type. |
12 | // |
13 | // See https://go.dev/ref/spec#Core_types for the definition of a core type. |
14 | func CoreType(T types.Type) types.Type { |
15 | U := T.Underlying() |
16 | if _, ok := U.(*types.Interface); !ok { |
17 | return U // for non-interface types, |
18 | } |
19 | |
20 | terms, err := _NormalTerms(U) |
21 | if len(terms) == 0 || err != nil { |
22 | // len(terms) -> empty type set of interface. |
23 | // err != nil => U is invalid, exceeds complexity bounds, or has an empty type set. |
24 | return nil // no core type. |
25 | } |
26 | |
27 | U = terms[0].Type().Underlying() |
28 | var identical int // i in [0,identical) => Identical(U, terms[i].Type().Underlying()) |
29 | for identical = 1; identical < len(terms); identical++ { |
30 | if !types.Identical(U, terms[identical].Type().Underlying()) { |
31 | break |
32 | } |
33 | } |
34 | |
35 | if identical == len(terms) { |
36 | // https://go.dev/ref/spec#Core_types |
37 | // "There is a single type U which is the underlying type of all types in the type set of T" |
38 | return U |
39 | } |
40 | ch, ok := U.(*types.Chan) |
41 | if !ok { |
42 | return nil // no core type as identical < len(terms) and U is not a channel. |
43 | } |
44 | // https://go.dev/ref/spec#Core_types |
45 | // "the type chan E if T contains only bidirectional channels, or the type chan<- E or |
46 | // <-chan E depending on the direction of the directional channels present." |
47 | for chans := identical; chans < len(terms); chans++ { |
48 | curr, ok := terms[chans].Type().Underlying().(*types.Chan) |
49 | if !ok { |
50 | return nil |
51 | } |
52 | if !types.Identical(ch.Elem(), curr.Elem()) { |
53 | return nil // channel elements are not identical. |
54 | } |
55 | if ch.Dir() == types.SendRecv { |
56 | // ch is bidirectional. We can safely always use curr's direction. |
57 | ch = curr |
58 | } else if curr.Dir() != types.SendRecv && ch.Dir() != curr.Dir() { |
59 | // ch and curr are not bidirectional and not the same direction. |
60 | return nil |
61 | } |
62 | } |
63 | return ch |
64 | } |
65 | |
66 | // _NormalTerms returns a slice of terms representing the normalized structural |
67 | // type restrictions of a type, if any. |
68 | // |
69 | // For all types other than *types.TypeParam, *types.Interface, and |
70 | // *types.Union, this is just a single term with Tilde() == false and |
71 | // Type() == typ. For *types.TypeParam, *types.Interface, and *types.Union, see |
72 | // below. |
73 | // |
74 | // Structural type restrictions of a type parameter are created via |
75 | // non-interface types embedded in its constraint interface (directly, or via a |
76 | // chain of interface embeddings). For example, in the declaration type |
77 | // T[P interface{~int; m()}] int the structural restriction of the type |
78 | // parameter P is ~int. |
79 | // |
80 | // With interface embedding and unions, the specification of structural type |
81 | // restrictions may be arbitrarily complex. For example, consider the |
82 | // following: |
83 | // |
84 | // type A interface{ ~string|~[]byte } |
85 | // |
86 | // type B interface{ int|string } |
87 | // |
88 | // type C interface { ~string|~int } |
89 | // |
90 | // type T[P interface{ A|B; C }] int |
91 | // |
92 | // In this example, the structural type restriction of P is ~string|int: A|B |
93 | // expands to ~string|~[]byte|int|string, which reduces to ~string|~[]byte|int, |
94 | // which when intersected with C (~string|~int) yields ~string|int. |
95 | // |
96 | // _NormalTerms computes these expansions and reductions, producing a |
97 | // "normalized" form of the embeddings. A structural restriction is normalized |
98 | // if it is a single union containing no interface terms, and is minimal in the |
99 | // sense that removing any term changes the set of types satisfying the |
100 | // constraint. It is left as a proof for the reader that, modulo sorting, there |
101 | // is exactly one such normalized form. |
102 | // |
103 | // Because the minimal representation always takes this form, _NormalTerms |
104 | // returns a slice of tilde terms corresponding to the terms of the union in |
105 | // the normalized structural restriction. An error is returned if the type is |
106 | // invalid, exceeds complexity bounds, or has an empty type set. In the latter |
107 | // case, _NormalTerms returns ErrEmptyTypeSet. |
108 | // |
109 | // _NormalTerms makes no guarantees about the order of terms, except that it |
110 | // is deterministic. |
111 | func _NormalTerms(typ types.Type) ([]*Term, error) { |
112 | switch typ := typ.(type) { |
113 | case *TypeParam: |
114 | return StructuralTerms(typ) |
115 | case *Union: |
116 | return UnionTermSet(typ) |
117 | case *types.Interface: |
118 | return InterfaceTermSet(typ) |
119 | default: |
120 | return []*Term{NewTerm(false, typ)}, nil |
121 | } |
122 | } |
123 |
Members